

Hydrodynamic limit for a Facilitated Exclusion Process with open boundaries HUGO DA CUNHA joint work with Clément Erignoux and Marielle Simon Institut Camille Jordan – Université Lyon 1, France

Partial Differential Equations & Particle Systems XII edition, 2024, Trieste

The model

Boundary-driven setting

Equilibrium case $\alpha = \beta$

 $\bar{\mu}^{N}$ is the restriction to Λ_{N} of the measure $\pi_{\bar{\rho}(\alpha)}$, with density $\bar{\rho}(\alpha) = \frac{1}{2-\alpha}$

Non-equilibrium case $\alpha \neq \beta$

 $\frac{1}{2}$

2

1 2

Figure 1: Illustration (for N = 10) of the bulk dynamics (above) and of the boundary exchanges with left reservoir (below).

Bulk dynamics

For $N \in \mathbb{N}^*$, consider the lattice $\Lambda_N = \{1, \ldots, N-1\}$. On each site of this lattice, put 1 or 0 particles to get a *configuration* $\eta = (\eta_x)_{x \in \Lambda_N}$ in $\Omega_N = \{0, 1\}^{\Lambda_N}$. Then, particles jump at rate 1 to each neighbouring site provided the target site is empty (*exclusion rule*) and the other neighbouring site is occupied (*kinetic constraint*). This dynamics is described by the infinitesimal generator

where
$$\mathscr{L}_{0}f(\eta) = \sum_{x=1}^{N-2} c_{x,x+1}(\eta) \left[f(\eta^{x,x+1}) - f(\eta) \right]$$
$$c_{x,x+1}(\eta) = \eta_{x-1}\eta_{x}(1 - \eta_{x+1}) + (1 - \eta_{x})\eta_{x+1}\eta_{x+2}. \quad (\star)$$

Boundary dynamics

At both ends, we add stochastic reservoirs able to exchange particles with the system. Let $\alpha, \beta \in (0, 1)$ represent their respective density, and also $\kappa > 0$, $\theta \in \mathbb{R}$ be parameters ruling the speed of those exchanges. In (\star), we set by convention

$$\eta_0 = \alpha$$
 and $\eta_N = \beta$.

Long-range correlations \hookrightarrow No explicit expression for $\bar{\mu}^N$...

One information though: The active density is affine. **Figure 2:** Simulation of the density under $\bar{\mu}^N$ (blue) and stationary profile of the hydrodynamic equation (red) in the case $\theta = 0$.

Main result: Hydrodynamic limit

Theorem [Da Cunha, Erignoux, Simon, 2024]

Consider the Markov process $(\eta(t))_{t\geq 0}$ driven by the diffusively accelerated generator $N^2(\mathscr{L}_0 + \mathscr{L}_\ell + \mathscr{L}_r)$, and starting from an initial state ν_0^N . Assume that ν_0^N is concentrated on \mathscr{C}_N , and that under this state, the particles are distributed according to a Lipschitz-continuous profile $\rho^{\text{ini}} : [0,1] \longrightarrow (\frac{1}{2},1]$. Then, for any $t \in [0,T]$, any $\delta > 0$ and any continuous function $G : [0,1] \longrightarrow \mathbb{R}$, we have

0.55 +

$$\lim_{N \to +\infty} \mathbb{P}_{\nu_0^N} \left(\left| \frac{1}{N} \sum_{x \in \Lambda_N} G\left(\frac{x}{N}\right) \eta_x(t) - \int_0^1 G(u) \rho_t(u) du \right| > \delta \right) = 0$$

where ρ is the unique weak solution to the *fast diffusion equation*

$$\begin{cases} \partial_t \rho = \partial_u^2 \mathfrak{a}(\rho) \\ \rho_0(\cdot) = \rho^{\mathrm{ini}}(\cdot) \end{cases}$$

with, for all $t \in [0, T]$,

The exchange dynamics with the left reservoir is described by the generator $\mathscr{L}_{\ell}f(\eta) = \frac{\kappa}{N^{\theta}} \left(\alpha (1 - \eta_1) + (1 - \alpha)\eta_1\eta_2 \right) \left[f(\eta^1) - f(\eta) \right].$

The same happens on the right with β instead of α , giving a generator \mathcal{L}_r .

Phase transition at the critical density $\rho_c = \frac{1}{2}$

Particles that are isolated cannot move, we call them frozen particles. The other particles are called active. Forget one moment about boundaries, imagine a periodic system with total density ρ .

• If $\rho \leq \frac{1}{2}$, then all particles will become frozen after a transience time.

If ρ > ¹/₂, then there will always remain active particles. After a transience time, the holes will become isolated. We end in an ergodic configuration.
Ergodic component: 𝔅_N = {η ∈ Ω_N : η_x + η_{x+1} ≥ 1, ∀x ∈ [[1, N - 2]]}
In the presence of reservoirs, impossible to evolve towards frozen states, so

There is a unique stationary state $\bar{\mu}^N$ concentrated on \mathscr{C}_N .

Stationary states

Grand-canonical measures on \mathbb{Z}

For all $\rho > \frac{1}{2}$, there is a measure π_{ρ} on \mathbb{Z} which is stationary, translation invariant, and concentrated on the ergodic component. (2)

• if $\theta < 1$, *Dirichlet boundary conditions*

$$\rho_t(0) = \frac{1}{2 - \alpha} \quad \text{and} \quad \rho_t(1) = \frac{1}{2 - \beta}.$$

if θ = 1, *Robin boundary conditions* ∂_ua(ρ_t)(0) = κ(a(ρ_t(0)) − α) and ∂_ua(ρ_t)(1) = κ(β − a(ρ_t(1))).
if θ > 1, *Neumann boundary conditions* ∂_ua(ρ_t)(0) = ∂_ua(ρ_t)(1) = 0.

Ingredients of the proof

- Build a reference measure approximating the unknown stationary state $\bar{\mu}^N$, relying on the Markov construction and the few information we have.
- Adapt Guo, Papanicolaou and Varadhan's *entropy method* to non-product stationary state, and non-equilibrium, non-translation invariant setting.

Open questions: what if...

 $\operatorname{Ber}(\rho)$

$$\pi_{\rho}(\eta_{x+1} = 1 | \eta_x = 1) = \mathfrak{a}(\rho)$$
 and $\pi_{\rho}(\eta_{x+1} = 1 | \eta_x = 0) = 1$

Relation between total density and active density:

$$\mathfrak{a}(\rho) = \frac{2\rho - 1}{\rho} \quad \Longleftrightarrow \quad \rho = \frac{1}{2 - \mathfrak{a}(\rho)}$$

- ...we don't start straight from the ergodic component?
 - \hookrightarrow We need an estimation of the transience time (without using mappings).
- ...we don't start in the supercritical phase?
 - \hookrightarrow We expect a Stefan problem like in (3), with the same boundary conditions.

References

[1] Da Cunha, Erignoux, and Simon, "Hydrodynamic limit for an open facilitated exclusion process with slow/fast boundaries," 2024. arXiv:2401.16535.
[2] Blondel, Erignoux, Sasada, and Simon, "Hydrodynamic limit for a facilitated exclusion process," *Annales de l'IHP - Probabilités et Statistiques*, 2020.
[3] Blondel, Erignoux, and Simon, "Stefan problem for a non-ergodic facilitated exclusion process," *Probability and Mathematical Physics*, 2021.