

Hydrodynamic limit for a Facilitated Exclusion Process with open boundaries HUGO DA CUNHA joint work with Clément Erignoux and Marielle Simon Institut Camille Jordan – Université Lyon 1, France

Partial Differential Equations & Particle Systems XII edition, 2024, Trieste

 $0 \t 1 \t 2$

Figure 1: Illustration (for $N = 10$) of the bulk dynamics (above) and of the boundary exchanges with left reservoir (below).

The model

0 1 2

 $0 \t 1 \t 2$

For $N \in \mathbb{N}^*$, consider the lattice $\Lambda_N = \{1, ..., N-1\}$. On each site of this lattice, put 1 or 0 particles to get a *configuration* $\eta=(\eta_x)_{x\in\Lambda_N}$ in $\Omega_N=\{0,1\}^{\Lambda_N}.$ Then, particles jump at rate 1 to each neighbouring site provided the target site is empty (*exclusion rule*) and the other neighbouring site is occupied (*kinetic constraint*). This dynamics is described by the infinitesimal generator

Bulk dynamics

At both ends, we add stochastic reservoirs able to exchange particles with the system. Let $\alpha, \beta \in (0,1)$ represent their respective density, and also $\kappa > 0$, $\theta \in \mathbb{R}$ be parameters ruling the speed of those exchanges. In (\star) , we set by convention

The exchange dynamics with the left reservoir is described by the generator $\mathscr{L}_\ell f(\eta) = \frac{\kappa}{\lambda^\eta}$ *Nθ* $(\alpha(1 - \eta_1) + (1 - \alpha)\eta_1\eta_2) [f(\eta^1) - f(\eta)].$

The same happens on the right with β instead of α , giving a generator $\mathscr{L}_{r}.$

Phase transition at the critical density $\rho_c = \frac{1}{2}$ 2

• If $\rho \leq \frac{1}{2}$, then all particles will become frozen after a transience time.

$$
\mathcal{L}_{0}f(\eta) = \sum_{x=1}^{N-2} c_{x,x+1}(\eta) \left[f(\eta^{x,x+1}) - f(\eta) \right]
$$

where
$$
c_{x,x+1}(\eta) = \eta_{x-1}\eta_{x}(1 - \eta_{x+1}) + (1 - \eta_{x})\eta_{x+1}\eta_{x+2}.
$$
 (*)

Boundary dynamics

• If $\rho > \frac{1}{2}$, then there will always remain active particles. After a transience time, the holes will become isolated. We end in an ergodic configuration. **Ergodic component:** $\mathscr{E}_N = \{ \eta \in \Omega_N : \eta_x + \eta_{x+1} \ge 1, \ \forall x \in [0, N-2] \}$ In the presence of reservoirs, impossible to evolve towards frozen states, so

There is a unique stationary state $\bar{\mu}^N$ concentrated on $\mathcal{E}_N.$

For all $\rho > \frac{1}{2}$, there is a measure π_{ρ} on \mathbb{Z} which is stationary, translation invariant, and concentrated on the ergodic component. [\(2\)](#page-0-1)

$$
\eta_0=\alpha \qquad \text{and} \qquad \eta_N=\beta.
$$

Long-range correlations \hookrightarrow No explicit expression for $\bar{\mu}^N...$

Particles that are isolated cannot move, we call them frozen particles. The other particles are called active. Forget one moment about boundaries, imagine a periodic system with total density *ρ*.

- Build a reference measure approximating the unknown stationary state $\bar{\mu}^N$, relying on the Markov construction and the few information we have.
- Adapt Guo, Papanicolaou and Varadhan's *entropy method* to non-product stationary state, and non-equilibrium, non-translation invariant setting.

Stationary states

Grand-canonical measures on Z

Ber(*ρ*)

$$
\pi_{\rho}(\eta_{x+1} = 1 | \eta_x = 1) = \mathfrak{a}(\rho)
$$
 and $\pi_{\rho}(\eta_{x+1} = 1 | \eta_x = 0) = 1$

Relation between total density and active density:

$$
\boxed{\mathfrak{a}(\rho) = \frac{2\rho - 1}{\rho} \iff \rho = \frac{1}{2 - \mathfrak{a}(\rho)}}
$$

Boundary-driven setting

Equilibrium case $\alpha = \beta$

 $\bar{\mu}^N$ is the restriction to Λ_N of the measure $\pi_{\bar{\rho}(\alpha)}$, with density $\bar\rho(\alpha) =$ 1 $2 - \alpha$

Non-equilibrium case $\alpha \neq \beta$

One information though: The active density is affine.

 $\frac{1}{49}$ x $\overline{20}$ $30[°]$ **Figure 2:** Simulation of the density under $\bar{\mu}^N$ (blue) and stationary profile of the hydrodynamic equation (red) in the case $\theta = 0$.

UNIVERSITÉ

DE LYON

Main result: Hydrodynamic limit

Theorem [Da Cunha, Erignoux, Simon, 2024]

Consider the Markov process $(\eta(t))_{t>0}$ driven by the diffusively accelerated generator $N^2(\mathcal{L}_0+\mathcal{L}_\ell+\mathcal{L}_r)$, and starting from an initial state v_0^N θ . Assume that *ν N* δ_0^{N} is concentrated on \mathcal{E}_N , and that under this state, the particles are distributed according to a Lipschitz-continuous profile $\rho^{\text{ini}}: [0,1] \longrightarrow (\frac{1}{2})$ 2 , 1]. Then, for any *t* ∈ [0, *T*], any $\delta > 0$ and any continuous function *G* : [0, 1] $\longrightarrow \mathbb{R}$, we have

 $0,75$

 0.65

 $\overline{\rho}(\alpha$

 $0.55 +$

$$
\lim_{N \to +\infty} \mathbb{P}_{\nu_0^N} \left(\left| \frac{1}{N} \sum_{x \in \Lambda_N} G\left(\frac{x}{N}\right) \eta_x(t) - \int_0^1 G(u) \rho_t(u) \mathrm{d}u \right| > \delta \right) = 0
$$

where *ρ* is the unique weak solution to the *fast diffusion equation*

$$
\begin{cases} \partial_t \rho = \partial_u^2 \mathfrak{a}(\rho) \\ \rho_0(\cdot) = \rho^{\text{ini}}(\cdot) \end{cases}
$$

with, for all $t \in [0, T]$,

• if *θ* < 1, *Dirichlet boundary conditions*

$$
\rho_t(0) = \frac{1}{2-\alpha}
$$
 and $\rho_t(1) = \frac{1}{2-\beta}$.

 \bullet if $\theta = 1$, *Robin* boundary conditions $\partial_{\mu} \mathfrak{a}(\rho_t)(0) = \kappa (\mathfrak{a}(\rho_t(0)) - \alpha)$ and $\partial_{\mu} \mathfrak{a}(\rho_t)(1) = \kappa (\beta - \mathfrak{a}(\rho_t(1))).$ • if *θ* > 1, *Neumann boundary conditions* $\partial_{u} \mathfrak{a}(\rho_{t})(0) = \partial_{u} \mathfrak{a}(\rho_{t})(1) = 0.$

Ingredients of the proof

Open questions: what if...

- ...we don't start straight from the ergodic component?
	- \rightarrow We need an estimation of the transience time (without using mappings).
- ...we don't start in the supercritical phase?
	- \hookrightarrow We expect a Stefan problem like in [\(3\)](#page-0-2), with the same boundary conditions. Création Actions rapides Modèles Formules et offres Formation et découverte Contacter le service commercial 08 05 77 00 77 Se connecter

References

[1] Da Cunha, Erignoux, and Simon, "Hydrodynamic limit for an open facilitated exclusion process with slow/fast boundaries," 2024. [arXiv:2401.16535.](https://arxiv.org/abs/2401.16535) [2] Blondel, Erignoux, Sasada, and Simon, "Hydrodynamic limit for a facilitated exclusion process," Annales de l'IHP - Probabilités et Statistiques, 2020. [3] Blondel, Erignoux, and Simon, "Stefan problem for a non-ergodic facilitated exclusion process," *Probability and Mathematical Physics*, 2021.

2024 – Partial Differential Equations & Particle Systems XII edition, Trieste